
Improving Automated Program Repair using Two-layer
Tree-based Neural Networks

Yi Li, Shaohua Wang∗

SPACE Lab, New Jersey Inst. of Technology, USA

{yl622,davidsw}@njit.edu

Tien N. Nguyen
University of Texas at Dallas, USA

tien.n.nguyen@utdallas.edu

ABSTRACT

We present DLFix, a two-layer tree-based model learning bug-fixing

code changes and their surrounding code context to improve Auto-

mated Program Repair (APR). The first layer learns the surrounding

code context of a fix and uses it as weights for the second layer that

is used to learn the bug-fixing code transformation. Our empirical

results on Defect4J show that DLFix can fix 30 bugs and its results

are comparable and complementary to the best performing pattern-

based APR tools. Furthermore, DLFix can fix 2.5 times more bugs

than the best performing deep learning baseline.

CCS CONCEPTS
• Software and its engineering→ Softwaremaintenance tools;

KEYWORDS

Deep Learning; Automated Program Repair

ACM Reference Format:

Yi Li, Shaohua Wang and Tien N. Nguyen. 2020. Improving Automated

Program Repair using Two-layer Tree-based Neural Networks. In 42nd

International Conference on Software Engineering Companion (ICSE ’20 Com-

panion), October 5–11, 2020, Seoul, Republic of Korea. ACM, New York, NY,

USA, 2 pages. https://doi.org/10.1145/3377812.3390896

1 INTRODUCTION

Automated Program Repair (APR) techniques are useful to help

developers identify and fix software bugs. Recently, various APR

tools perform automated repairs using distinct ways, e.g., mining

and learning fixing patterns/templates [5], information retrieval [9],

or machine learning [6]. Deep learning (DL) has been applied in the

recent APR studies. Some DL approaches treat the APR as a neural

network machine translation (NMT) problem [10]. However, they

still have some major limitations: (1) have a hard time finding the

correct fixing location in a statement; (2) treat code using sequence-

based representations; and (3) often cannot learn the surrounding

code context information (i.e., unchanged code).

To address these challenges, we introduce DLFix, a two-layer

tree-based deep learning model to learn code transformations from

prior bug fixes to fix a given buggy code. We treat the APR problem

as code transformation learning, in which transformations corre-

sponding to bug fixes including (un)-changed parts are encoded as

∗Corresponding Author

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICSE ’20 Companion, October 5–11, 2020, Seoul, Republic of Korea

© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7122-3/20/05.
https://doi.org/10.1145/3377812.3390896

the input for model training. We conducted several experiments to

evaluate DLFix on three datasets:Defects4J, Bugs,jar, and Bigfix. Big-

Fix contains +20k real-world bugs. Our results show that DLFix can

fix 30 bugs and generate comparable and complementary results

compared with the top-performing pattern-based APR tools.

We make the following contribution: A. DL for APR: DLFix is

the first DL APR that generates comparable and complementary

results comparing with powerful pattern-based tools on Defects4J.

B. Model: DLFix has a new two-layer model to do the surrounding

code context and transformation learning separately.C. Empirical

Results: 1) We show DLFix can have comparable and complemen-

tary results comparing with the best pattern-based tools. DLFix

does not require hard-coding of bug-fixing patterns as in those

tools. DLFix is fully automatic and data-driven. 2) DLFix can fix at

least 2.5 times more bugs than the best performing DL approach.

2 OUR APPROACH

Figure 1 shows our approach consisting five steps.

Step 1. We conduct alpha-renaming on the variable names of a

project and use Word2Vec [7] to generate vector representations

for code tokens inMb andMf , whereMb is a buggy method and

Mf isMb ’s fixed version. We generate a vector for the buggy sub-

tree T sub
b

that represents the buggy statement inMb and the other

vector for the sub-treeT sub
f

which represents the fixed statement in

Mf . To do this, we use aDL-based code summarizationmodel [11] to

summarize a sub-tree into a vector for a node (called a summarized

node) which be used in following steps.

Step 2. We build a two-layer tree-based learning model to do

the automatic repairing. We use one tree-based RNN as the local

Context Learning Layer (CLL) to learn the local context of the

code surrounding the bug-fixing changes (i.e., the unchanged code

surrounding the changed one).

Step 3. The second layer is a code Transformation Learning

Layer (TLL) for learning the code transformation changes. In this

TTL, we used the bug fixing before and after to train the model.

And also, we use the context of the transformation computed as

the vector in the CLL as the weight in this layer.

Step 4. We built some program analysis filters to help improve

the model performance.

Step 5. We use a Convolutional Neural Network (CNN) [3]

based classification model to re-rank all patches.

3 EVALUATION

3.1 Research Questions

RQ1. How well does DLFix perform in comparison with the state-

of-the-art pattern-based APR approaches?

RQ2. How well does DLFix perform in comparison with the state-

of-the-art deep learning-based APR approaches?

316

2020 IEEE/ACM 42nd International Conference on Software Engineering: Companion Proceedings (ICSE-Companion)



Figure 1: DLFix: Context-based Transformation Learning for Automated Program Repair

Table 1: RQ1. Comparison with the Pattern-based APR Baselines on Defect4J.

Project jGenProg HDRepair Nopol ACS ELIXIR ssFix CapGen SketchFix FixMiner LSRepair AVATAR SimFix TBar DLFix

Chart 0/7 0/2 1/6 2/2 4/7 3/7 4/4 6/8 5/8 3/8 5/12 4/8 9/14 5/12
Closure 0/0 0/7 0/0 0/0 0/0 2/11 0/0 3/5 5/5 0/0 8/12 6/8 8/12 6/10
Lang 0/0 2/6 3/7 3/4 8/12 5/12 5/5 3/4 2/3 8/14 5/11 9/13 5/14 5/12
Math 5/18 4/7 1/21 12/16 12/19 10/26 12/16 7/8 12/14 7/14 6/13 14/26 19/36 12/28

Mockito 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 1/1 2/2 0/0 1/2 1/1
Time 0/2 0/1 0/1 1/1 2/3 0/4 0/0 0/1 1/1 0/0 1/3 1/1 1/3 1/2

Total 5/27 6/23 5/35 18/23 26/41 20/60 21/25 19/26 25/31 19/37 27/53 34/56 43/81 30/65

P(%) 18.5 26.1 14.3 78.3 63.4 33.3 84.0 73.1 80.6 51.4 50.9 60.7 53.1 46.2

Note: P is the probability of the generated plausible patches to be correct. In a cell, x/y: x is the number of correct fixes and y is the number of candidate patches that can pass all test cases.

3.2 Experimental Methodology

Dataset. We evaluate approaches on Defects4J, Bugs.jar, and

BigFix [4]. For BigFix, we use 90% data for training models and 10%

for testing them, while we train all approaches on BigFix and test

them on Defects4J and Bugs.jar.

Analysis Approaches. In RQ1, we use the same fault local-

ization tool Ochiai as SimFix and the test case validation to help

find the right patches. In RQ2, we assume the buggy locations are

known as input and do no test case validation.

3.3 Experimental Results

RQ1. DLFix can auto-fix 30 Defects4J bugs while the best per-

formed pattern baselines: SimFix and Tbar can fix 34 and 43 bugs.

DLFix can fix 11 and 7 unique bugs compared with SimFix and

Tbar, respectively. DLFix can have comparable and complementary

results with top pattern based approaches.

Table 2: RQ2. Accuracy Comparison with DL-based APR ap-

proaches on three Datasets.

Approach
Defect4J Bugs.jar BigFix

Top1 Top5 Top10 Top1 Top5 Top10 Top1 Top5 Top10

Ratchet 2.0% 4.0% 6.9% 2.4% 4.4% 6.8% 3.0% 4.1% 6.9%
Tufano (’18) 6.9% 9.9% 11.9% 8.4% 11.1% 12.9% 7.9% 10.6% 12.1%
CODIT 8.9% 13.9% 15.8% 7.0% 11.8% 14.8% 6.9% 13.7% 18.3%
Tufano (’19) 15.8% 20.8% 23.8% 13.5% 18.7% 23.1% 15.4% 17.3% 21.4%

DLFix 39.6% 43.6% 48.5% 34.2% 36.4% 37.9% 29.4% 31.1% 33.4%

Note: Top K is the number of times that a correct patch is in the ranked list of top K candidate
patches over the total number of bugs.

RQ2.DLFix can fix 39.6%, 34.2%, and 29.4% bugs in Defects4J,

Bugs.jar, and BigFix using only top-1 ranked candidates. DLFix can

fix at least 2.5 times bugs than the best performing baseline.

4 RELATED STUDY

The earlier APR aims to derive similar fixes for similar source code,

e.g. [8]. A large group of APR approaches has explored search-

based software engineering to tackle more general types of bugs [2].

The fixing patterns or templates could be automatically or semi-

automatically mined [5]. Recently, DL also has been applied to APR

for directly generating patches [1, 10].

5 CONCLUSION
In this poster, we show DLFix, a two-layer DL based automated

program repair (APR) approach, to improve and complement the

existing state-of-the-art APR approaches. Our results show that

DLFix can have comparable and complementary results compared

with pattern based approaches and can fix at least 2.5 times more

bugs than other DL based approaches.

ACKNOWLEDGMENTS
This work was supported in part by the US National Science Foun-

dation (NSF) grants CCF-1723215, CCF-1723432, TWC-1723198,

CCF-1518897, and CNS-1513263.

REFERENCES
[1] Saikat Chakraborty, Miltiadis Allamanis, and Baishakhi Ray. 2018. CODIT:

Code Editing with Tree-Based Neural Machine Translation. arXiv preprint
arXiv:1810.00314 (2018).

[2] Claire Le Goues, ThanhVu Nguyen, Stephanie Forrest, and Westley Weimer. 2012.
GenProg: A Generic Method for Automatic Software Repair. In TSE 38, 1. 54–72.

[3] Yoon Kim. 2014. Convolutional neural networks for sentence classification. arXiv
preprint arXiv:1408.5882 (2014).

[4] Yi Li, ShaohuaWang, Tien N. Nguyen, and Son Van Nguyen. 2019. Improving Bug
Detection via Context-Based Code Representation Learning and Attention-Based
Neural Networks. Proc. ACM Program. Lang. 3, OOPSLA, Article Article 162 (Oct.
2019), 30 pages. https://doi.org/10.1145/3360588

[5] Kui Liu, Anil Koyuncu, Dongsun Kim, and Tegawendé F. Bissyandé. 2019. TBar:
Revisiting Template-Based Automated Program Repair. In 28th ACM SIGSOFT
International Symposium on Software Testing and Analysis (ISSTA). 31–42.

[6] Fan Long, Peter Amidon, and Martin Rinard. 2017. Automatic Inference of Code
Transforms for Patch Generation. In FSE. New York, NY, USA, 727–739.

[7] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013.
Distributed Representations of Words and Phrases and their Compositionality.
CoRR abs/1310.4546 (2013). arXiv:1310.4546

[8] Baishakhi Ray and Miryung Kim. 2012. A Case Study of Cross-System Porting in
Forked Projects. In Proceedings of the ACM SIGSOFT 20th International Symposium
on the Foundations of Software Engineering (FSE). Association for Computing
Machinery, New York, NY, USA, Article Article 53, 11 pages.

[9] Ripon K Saha, Yingjun Lyu, Hiroaki Yoshida, and Mukul R Prasad. 2017. Elixir:
Effective object-oriented program repair. In ASE. 648–659.

[10] Michele Tufano, Jevgenija Pantiuchina, CodyWatson, Gabriele Bavota, and Denys
Poshyvanyk. 2019. On Learning Meaningful Code Changes Via Neural Machine
Translation. In ICSE. 25–36.

[11] Yao Wan, Zhou Zhao, Min Yang, Guandong Xu, Haochao Ying, Jian Wu, and
Philip S. Yu. 2018. Improving Automatic Source Code Summarization via Deep
Reinforcement Learning. In ASE (ASE 2018). 397–407.

317


