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ABSTRACT

We present DLFix, a two-layer tree-based model learning bug-fixing

code changes and their surrounding code context to improve Auto-

mated Program Repair (APR). The first layer learns the surrounding

code context of a fix and uses it as weights for the second layer that

is used to learn the bug-fixing code transformation. Our empirical

results on Defect4J show that DLFix can fix 30 bugs and its results

are comparable and complementary to the best performing pattern-

based APR tools. Furthermore, DLFix can fix 2.5 times more bugs

than the best performing deep learning baseline.
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1 INTRODUCTION

Automated Program Repair (APR) techniques are useful to help

developers identify and fix software bugs. Recently, various APR

tools perform automated repairs using distinct ways, e.g., mining

and learning fixing patterns/templates [5], information retrieval [9],

or machine learning [6]. Deep learning (DL) has been applied in the

recent APR studies. Some DL approaches treat the APR as a neural

network machine translation (NMT) problem [10]. However, they

still have some major limitations: (1) have a hard time finding the

correct fixing location in a statement; (2) treat code using sequence-

based representations; and (3) often cannot learn the surrounding

code context information (i.e., unchanged code).

To address these challenges, we introduce DLFix, a two-layer

tree-based deep learning model to learn code transformations from

prior bug fixes to fix a given buggy code. We treat the APR problem

as code transformation learning, in which transformations corre-

sponding to bug fixes including (un)-changed parts are encoded as
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the input for model training. We conducted several experiments to

evaluate DLFix on three datasets:Defects4J, Bugs,jar, and Bigfix. Big-

Fix contains +20k real-world bugs. Our results show that DLFix can

fix 30 bugs and generate comparable and complementary results

compared with the top-performing pattern-based APR tools.

We make the following contribution: A. DL for APR: DLFix is

the first DL APR that generates comparable and complementary

results comparing with powerful pattern-based tools on Defects4J.

B. Model: DLFix has a new two-layer model to do the surrounding

code context and transformation learning separately.C. Empirical

Results: 1) We show DLFix can have comparable and complemen-

tary results comparing with the best pattern-based tools. DLFix

does not require hard-coding of bug-fixing patterns as in those

tools. DLFix is fully automatic and data-driven. 2) DLFix can fix at

least 2.5 times more bugs than the best performing DL approach.

2 OUR APPROACH

Figure 1 shows our approach consisting five steps.

Step 1. We conduct alpha-renaming on the variable names of a

project and use Word2Vec [7] to generate vector representations

for code tokens inMb andMf , whereMb is a buggy method and

Mf isMb ’s fixed version. We generate a vector for the buggy sub-

tree T sub
b

that represents the buggy statement inMb and the other

vector for the sub-treeT sub
f

which represents the fixed statement in

Mf . To do this, we use aDL-based code summarizationmodel [11] to

summarize a sub-tree into a vector for a node (called a summarized

node) which be used in following steps.

Step 2. We build a two-layer tree-based learning model to do

the automatic repairing. We use one tree-based RNN as the local

Context Learning Layer (CLL) to learn the local context of the

code surrounding the bug-fixing changes (i.e., the unchanged code

surrounding the changed one).

Step 3. The second layer is a code Transformation Learning

Layer (TLL) for learning the code transformation changes. In this

TTL, we used the bug fixing before and after to train the model.

And also, we use the context of the transformation computed as

the vector in the CLL as the weight in this layer.

Step 4. We built some program analysis filters to help improve

the model performance.

Step 5. We use a Convolutional Neural Network (CNN) [3]

based classification model to re-rank all patches.

3 EVALUATION

3.1 Research Questions

RQ1. How well does DLFix perform in comparison with the state-

of-the-art pattern-based APR approaches?

RQ2. How well does DLFix perform in comparison with the state-

of-the-art deep learning-based APR approaches?
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Figure 1: DLFix: Context-based Transformation Learning for Automated Program Repair

Table 1: RQ1. Comparison with the Pattern-based APR Baselines on Defect4J.

Project jGenProg HDRepair Nopol ACS ELIXIR ssFix CapGen SketchFix FixMiner LSRepair AVATAR SimFix TBar DLFix

Chart 0/7 0/2 1/6 2/2 4/7 3/7 4/4 6/8 5/8 3/8 5/12 4/8 9/14 5/12
Closure 0/0 0/7 0/0 0/0 0/0 2/11 0/0 3/5 5/5 0/0 8/12 6/8 8/12 6/10
Lang 0/0 2/6 3/7 3/4 8/12 5/12 5/5 3/4 2/3 8/14 5/11 9/13 5/14 5/12
Math 5/18 4/7 1/21 12/16 12/19 10/26 12/16 7/8 12/14 7/14 6/13 14/26 19/36 12/28

Mockito 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 1/1 2/2 0/0 1/2 1/1
Time 0/2 0/1 0/1 1/1 2/3 0/4 0/0 0/1 1/1 0/0 1/3 1/1 1/3 1/2

Total 5/27 6/23 5/35 18/23 26/41 20/60 21/25 19/26 25/31 19/37 27/53 34/56 43/81 30/65

P(%) 18.5 26.1 14.3 78.3 63.4 33.3 84.0 73.1 80.6 51.4 50.9 60.7 53.1 46.2

Note: P is the probability of the generated plausible patches to be correct. In a cell, x/y: x is the number of correct fixes and y is the number of candidate patches that can pass all test cases.

3.2 Experimental Methodology

Dataset. We evaluate approaches on Defects4J, Bugs.jar, and

BigFix [4]. For BigFix, we use 90% data for training models and 10%

for testing them, while we train all approaches on BigFix and test

them on Defects4J and Bugs.jar.

Analysis Approaches. In RQ1, we use the same fault local-

ization tool Ochiai as SimFix and the test case validation to help

find the right patches. In RQ2, we assume the buggy locations are

known as input and do no test case validation.

3.3 Experimental Results

RQ1. DLFix can auto-fix 30 Defects4J bugs while the best per-

formed pattern baselines: SimFix and Tbar can fix 34 and 43 bugs.

DLFix can fix 11 and 7 unique bugs compared with SimFix and

Tbar, respectively. DLFix can have comparable and complementary

results with top pattern based approaches.

Table 2: RQ2. Accuracy Comparison with DL-based APR ap-

proaches on three Datasets.

Approach
Defect4J Bugs.jar BigFix

Top1 Top5 Top10 Top1 Top5 Top10 Top1 Top5 Top10

Ratchet 2.0% 4.0% 6.9% 2.4% 4.4% 6.8% 3.0% 4.1% 6.9%
Tufano (’18) 6.9% 9.9% 11.9% 8.4% 11.1% 12.9% 7.9% 10.6% 12.1%
CODIT 8.9% 13.9% 15.8% 7.0% 11.8% 14.8% 6.9% 13.7% 18.3%
Tufano (’19) 15.8% 20.8% 23.8% 13.5% 18.7% 23.1% 15.4% 17.3% 21.4%

DLFix 39.6% 43.6% 48.5% 34.2% 36.4% 37.9% 29.4% 31.1% 33.4%

Note: Top K is the number of times that a correct patch is in the ranked list of top K candidate
patches over the total number of bugs.

RQ2.DLFix can fix 39.6%, 34.2%, and 29.4% bugs in Defects4J,

Bugs.jar, and BigFix using only top-1 ranked candidates. DLFix can

fix at least 2.5 times bugs than the best performing baseline.

4 RELATED STUDY

The earlier APR aims to derive similar fixes for similar source code,

e.g. [8]. A large group of APR approaches has explored search-

based software engineering to tackle more general types of bugs [2].

The fixing patterns or templates could be automatically or semi-

automatically mined [5]. Recently, DL also has been applied to APR

for directly generating patches [1, 10].

5 CONCLUSION
In this poster, we show DLFix, a two-layer DL based automated

program repair (APR) approach, to improve and complement the

existing state-of-the-art APR approaches. Our results show that

DLFix can have comparable and complementary results compared

with pattern based approaches and can fix at least 2.5 times more

bugs than other DL based approaches.
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